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Abstract—Surfactant systems with amphiphilic character are interesting vehicles for effective drug delivery and their ability to solubilize 
hydrophobic drugs in water medium is studied through complex formation of SMZ (sulfamethazine, a well-known antibiotic drug) with Sodium-
dodecyl-sulfate (SDS) and Cetyl-tri-methyl-ammonium-bromide (CTAB), two well-known anionic and cationic surfactants respectively. 
Different bio-physical techniques like spectroscopy, microscopy and calorimetry have been used to monitor the said complex formation 
quantitatively. The results obtained from UV−vis spectroscopy showed the stepwise interaction between SMZ and the surfactants in the free 
form and under the micellar condition. Successful and stable micelle formation was supported by microscopic images. Thermodynamics of the 
two-step interaction was clearly revealed by calorimetric results. The former being exothermic in nature which is spontaneous and enthalpy-
driven but the latter is endothermic, spontaneous and entropy-driven. 

Introduction 

In recent years, great progress has been achieved for drug’s targeted and controlled release via surfactant system.[1] Surfactants 
are amphiphilic molecules with polar head groups, which may be anionic, cationic, nonionic and zwitter-ionic. The hydrophobic 
tails of such surfactant molecules may be hydrogenated or fluorinated, linear or branched. It is well known that they are 
associated into micelles above the critical micelle concentration (CMC).[2] Surfactant systems with amphiphilic character are 
interesting vehicles for effective drug delivery and their ability to solubilize hydrophobic drugs in water medium is also well 
known. Carrying a drug to a specific target region and selective and efficient release are important from the pharmacological 
standpoint. A detailed understanding of the mechanism of molecular interaction between drugs and surfactants is thus an 
important aspect in the formulation of a new drug molecule and its effective delivery to specific targets. [3-6] Depending on the 
hydrophobic nature and electrical charge on the drug molecule, it can be solubilized in the inner core of the micelle, on the 
surface, or at an intermediate location in the palisade layer.[7-11] Surfactants also aide in the passage of active ingredients across 
various membranes, that must be traversed in order for the active ingredient to reach the target site. Therefore, micellar 
solubilization works as a smart solution for the bioavailability of sparingly soluble drug molecules. [12] 

Sulfamethazine (SMZ), is a commonly used sulfonamide drug in veterinary medicine as an antibacterial compound. It has also 
been used in animal feeds to promote growth. SMZ drug can hinder the synthesis of folic acid in micro-organisms and eventually 
inhibits the increase in bacteria but do not actively kill them.[13-14] But the problem of SMZ as a pharmaceutical drug is its poor 
solubility to aqueous media. To solve these problems, attempts have been made through micellization of the drug with 
surfactants (Fig. 1). Here, we have studied the complex formation of SMZ with Sodium-dodecyl-sulfate (SDS) and Cetyl-tri-
methyl-ammonium-bromide (CTAB), two well-known anionic and cationic surfactants respectively. Different bio-physical 
techniques like spectroscopy (UV-Vis, Infra-red), microscopy (High Resolution Optical Microscope) and calorimetry have been 
used to monitor the said complex formation quantitatively. 
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The absorption spectral changes of SMZ aliquot are monitored at 260 nm (which is the max of sulfamethazine). With increasing 
concentration of SDS, the absorption spectra of SMZ–SDS complex (Fig. 2a) showed a hyperchromic effect without a noticeable 
shift in the band position upto the critical micelle concentration (CMC). For CTAB addition, the spectral changes (Fig. 2b) were 
similar i.e it shows hyperchromic effect but there was no noticeable shift in the band position upto the critical micelle 
concentration at 260 nm. Increase in absorbance values indicate towards increase in solubility of the drug upon binding of drug 
to surfactant molecules. From the above stepwise spectral changes, we can observe the increasing solubility of SMZ with the 
interaction of SDS and CTAB through micelle formation.[12] Thus through significant increase in solubility of the drug via 
micelle formation will increase the bio-availability of the drug molecules to the target cells. 

IR Spectroscopy 

IR spectroscopy is an effective technique to show the changes in vibrational frequencies of the adsorbed molecule bound to a 
free molecule; thus it has become an integral part of biological/biomedical and pharmacological research.[16] The 
micelle/complex formation of SMZ-SDS and SMZ-CTAB were studied by IR spectroscopy. The IR spectra of free drug and 
complexes of SMZ-SDS and SMZ-CTAB is shown in Fig. 3. 

 
Figure 3: IR spectra of SMZ in the absence and presence of (a) SDS. (b) CTAB. 

The spectra of free SMZ shows absorption band at 1635 cm-1 for the C=C and C=N bond, absorption band at 3256 cm-1 is due to 
N-H and C-H bond.[17] On interaction of free drug with SDS and CTAB, the complex formation of SMZ-SDS was confirmed 
by the shifting of N-H and C-H peak from 3256 to 3280 cm-1, similarly for SMZ-CTAB complex, shifting of band N-H and C-H 
from 3256 cm-1 to 3265 cm-1 is observed which indicates the complex formation between the free drug and the surfactant 
molecule via hydrogen bonding. 
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High Resolution Optical Microscopic Study 

Different kind of microscopic techniques including High Resolution Optical Microscopy are very effective techniques to 
visualize aggregate formation and to understand the shape, size, etc. of the aggregates in detail.[18-20] Here, the drug (SMZ) 
induced SDS and CTAB micelle formation from free surfactant and drug molecules mixture has been reported which can benefit 
drug delivery systems. To visualize the micelle structures the high resolution microscopic data has been used here. Figure 4 
shows the interaction of SMZ with the surfactant as a representative case at room temperature. From the images at a scale of 20 
m, the SMZ-surfactant aggregated structures with a micelle shape are clearly visible. Thus the microscopic images are good 
evidence of SMZ-surfactant micelle complex formation. The sizes of micelles are varying between 10-20 m range. 

 

 

Fig. 4: High Resolution Optical Microscope, Leica DM2700 M of (a) and (b) SMZ-SDS (c) and (d) SMZ-CTAB. 

Calorimetry 

The energitics/thermodynamic profile of drug binding towards surfactants and micelle formation has been estimated via 
calorimetric studies (data not shown). Results suggested an exothermic enthalpy-driven initial electrostatic binding followed by 
an endothermic entropy-driven binding in the micellar core, both are spontaneous in nature. Generally the driving force for 
micellization is the transfer of hydrocarbon chains from water into the oil-like interior of the micelle which influences the 
entropy of the system. This entropic effect can be described as hydrophobic effect. The increase in entropy of the surrounding 
water molecules due to hydrophobic interaction is relatively less as the water molecules are usually arranged in an ordered 
fashion around the hydrocarbon chain.[12, 21-25] The aggregation between the SMZ and the surfactant (SDS and CTAB) 
molecules was mainly characterized by two steps of binding. At first, the interaction was initiated by electrostatic forces where 
free drug and surfactants interact and beyond the CMC, the surfactant molecules form micelles, and then the interaction is 
predominantly between the drug and the micelles. These data are in accordance with the UV-Vis experimental results where the 
anionic surfactant SDS behaves differently than the cationic surfactant CTAB. The results obtained from UV-Vis spectroscopy 
presented stepwise spectral change for the binding interaction between the SMZ molecules and surfactants in free form and 
under the micellar condition. 

(a) (b) 

(d) (d) 
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Conclusion 

In this work we have tried to see the interaction of SMZ with two surfactant SDS and CTAB an anionic and cationic surfactant. 
The results obtained from UV− vis spectroscopy showed the interaction between SMZ and the surfactants (SDS and CTAB) 
under the free and micellar conditions. This confirmed the increase in solubility of SMZ through micelle formation which 
increases the bioavailability leading to effective drug delivery. The UV- Vis spectroscopy data was supported by the IR- spectral 
studies. The IR spectra of free SMZ gives a sharp peak at 1635 cm-1 for the C=C, C=N bond, Peak at 3256 cm-1 for the N-H, C-H 
bond. Upon interaction/binding with SDS and CTAB , the SMZ-SDS and SMZ-CTAB complex, shifting of N-H and C-H peak 
to 3280 and 3265 cm-1 indicates the development of hydrogen bonded structure during the course of micellization. 
Thermodynamics interaction was revealed by calorimetric data. The reaction is exothermic, spontaneous and enthalpy-driven. 
The overall process is highly spontaneous and energetically favorable. High Resolution Optical Microscope, Leica DM2700 M 
of SMZ-CTAB and SMZ-SDS results clearly visualized the shape of micelle formation. Therefore, the main limitation for SMZ 
as a pharmaceutical drug (poor solubility in water, low bioavailability & medium selectivity to target cells) can be resolved 
through this kind of micelle formation as drug carriers. 
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